

On the utility of conditional answers

Jos Tellings

RAILS workshop, 24–26 Oct 2019

[polar question]

[*wh*-question]

[alternative question]

- Conditional statements may be answers to conditional questions:
 - (1) If Alfonso comes to the party, will Joanna leave? (Isaacs and Rawlins, 2008)If he comes, Joanna will leave.
- But in fact, conditionals can be answers to any type of question:
- (2) a. Will John come to the party?If he finishes his work, he will.If he finishes his work, yes.
 - b. Do you want coffee or tea?If it is freshly made, I would like coffee.If it is freshly made, coffee.

Conditionals licensed in a special epistemic situation

- A conditional 'if p, then q' is licensed as an answer to ?q in the following epistemic situation: $\neg K_B?p \land K_BK_A?p$.
- (6) [Alice calls to the IT help desk]A: Did I install my printer correctly?B: If there is a printer icon on the desktop, you installed it correctly.
- The conditional answer is similar to the following exchange:
- (7) [Alice calls to the IT help desk]
 A: Did I install my printer correctly?
 B₁: Is there a printer icon on the desktop?
 A: Yes.
 B₂: Then you installed it correctly.

A, B

 w_1 : p

 w_2 : $\neg p$

A, B

B

- c. What will John cook for dinner?If he managed to buy parmesan cheese, he will make pasta.If he managed to buy parmesan cheese, pasta.
- These answers crucially involve **partial knowledge**.
- The consequent can take the form of a fragment answer, suggesting that these are conditional speech acts, not conditional propositions.

Research questions

- When do speakers choose for a conditional answer, rather than an ignorant answer ('I don't know'/'Maybe')?
- If multiple conditional answers are possible, how do they choose between them?in other words: What is the **utility** of a conditional answer?

Conditional perfection and exhaustivity

- **Conditional perfection** (see e.g. van Canegem-Ardijns and van Belle (2008) for an overview) is the pragmatic strengthening of a conditional to a biconditional:
- (3) If John finishes his work in time, he will come to the party.
 → if John does not finish his work in time, he will not come to the party

- The pragmatic condition of Addressee Competence for B asking ?p to A is fulfilled.
 B entertains two possible types of knowledge states for A: S₁ such that S₁ ⊨ p, and S₂ such that S₂ ⊨ ¬p. If A is in S₁, the conditional answer solves A's query ?q (by MP). If A is in S₂, and the conditional answer is perfected, the query is also solved.
- Formalization: add B's **representations of potential epistemic states** of A to a discourse model like that of Farkas and Bruce (2010).

Conditional dependency as relevance

- In the absence of the situation above, a conditional answer can still be licensed: an answer like in (2a) (*If John finishes his work, he will come to the party*) can be felicitous even if B knows that A does not know anything about the truth value of *p*.
- Uttering a conditional statement felicitously requires a **dependency** between antecedent and consequent (taken from van Rooij and Schulz, 2019):

$$\Delta^{\!*}P^q_p := \frac{P(q|p) - P(q|\neg p)}{1 - P(q|\neg p)} \quad \text{should be high}$$

• It is learning this conditional dependency that makes the conditional answer relevant.

• Recent views suggest that perfection happens when a conditional answer is interpreted **exhaustively** (see e.g. von Fintel, 2001; Herburger, 2015).

(4) [implicit QUD: When will you succeed?]
 If you work hard you will succeed. (Herburger, 2015)
 Exhaustification: ⟨...and only if you work hard you will succeed⟩

• Various authors have claimed that if there are additional ways in which the consequent can be realized, conditional perfection is cancelled (Lilje, 1972; von Fintel, 2001, a.m.o).

(5) *Generalization* (Tellings, 2016)

A conditional 'if p, q' is not perfected in case additional alternative conditions p_i are salient for q ('if p_i , then q').

• Recent experimental work (Cariani and Rips, ms.) suggests that this is not enough – the exhaustive answer must furthermore be "in the respondent's interest".

• In unrelated work on exhaustive answers, it has been proposed that whether an answer is interpreted as **mention-some** or **mention-all** depends on "human concerns" underlying the asking of the question (van Rooij, 2004), which can be modeled in terms of the *decision problem* the speaker is trying to solve.

Utilities

• Utility-based framework: compare answers by measuring their *utility* with respect to the *decision problem* that A tries to solve (van Rooij, 2004; Benz & van Rooij, 2007). The decision problem contains a set of actions with associated utilities: U(a, w) is the utility of action a in world w. On the basis of U, a notion of *utility value* (UV) of an utterance can be defined (various ways to do this have been proposed).

• Computing the utility value of a material conditional does not work:

	w,c	w,¬c	¬w,c	¬w, ¬c	(w = finish, c = come work to party)
	w_1	w_2	w_3	w_4	
a_1 : buy more drinks	5	-3	5	-3	
a_2 : do nothing	-5	0	-5	0	
Table 1: Example utility function for (2a)					

Expected utility of a_1 on learning $p \supset q$: $\mathrm{EU}(a_1 | p \supset q) = \sum_w P(w | p \supset q) \cdot U(a_1, w) = \frac{7}{3}$. This is the same expected utility as for $\llbracket p \lor q \rrbracket = \{w_1, w_2, w_3\}$. Then $\mathrm{UV}(p \supset q) = \mathrm{UV}(p \lor q)$.

• Alice's U-function is only sensitive as to whether q (come to party), not as to whether p (finish work): the dependency between the two is what the conditional answer conveys. So, uttering a conditional leads to the utility function to change.

• This view requires a **dynamic** theory of utilities.

Larger goal of the project: develop a theory of the utility of conditional answers, in order to better understand the use of conditional utterances in conversation, as well as the phenomenon of conditional perfection.

Conclusions

Conditionals can be answers to any type of question in the case of partial knowledge.
They are conditional speech acts, and therefore a theory of the utility of conditional answers requires a dynamic component in which updating with a conditional is a two-step procedure.

References

References can be found in the handout.

I thank Stefan Kaufmann and Robert van Rooij for discussion. The views presented here are mine.